Abstract

We use a numerical-analytic technique to construct a sequence of successive approximations to the solution of a system of fractional differential equations, subject to Dirichlet boundary conditions. We prove the uniform convergence of the sequence of approximations to a limit function, which is the unique solution to the boundary value problem under consideration, and give necessary and sufficient conditions for the existence of solutions. The obtained theoretical results are confirmed by a model example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.