Abstract

Let R denote a connected region inside a simple polygon, P. By building 1-dimensional barriers in P ∖ R, we want to separate from R part(s) of P of maximum area. In this paper we introduce two versions of this problem. In the budget fence version the region R is static, and there is an upper bound on the total length of barriers we may build. In the basic geometric firefighter version we assume that R represents a fire that is spreading over P at constant speed (varying speed can also be handled). Building a barrier takes time proportional to its length, and each barrier must be completed before the fire arrives. In this paper we are assuming that barriers are chosen from a given set B that satisfies a certain linearity condition. For example, this condition is satisfied for barrier curves in general position, if any two barriers cross at most once. Even for simple cases (e. g., P a convex polygon and B the set of all diagonals), both problems are shown to be NP-hard. Our main result is an efficient ≈ 11.65 approximation algorithm for the firefighter problem. Since this algorithm solves a much more general problem—a hybrid of scheduling and maximum coverage—it may find wider application. We also provide a polynomial-time approximation scheme for the budget fence problem, for the case where barriers chosen from B must not cross.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call