Abstract
The achromatic number for a graph G=〈V,E〉 is the largest integer m such that there is a partition of V into disjoint independent sets {V1,…,Vm} such that for each pair of distinct sets Vi, Vj, Vi∪Vj is not an independent set in G. Yannakakis and Gavril (1980, SIAM J. Appl. Math.38, 364–372) proved that determining this value for general graphs is NP-complete. For n-vertex graphs we present the first o(n) approximation algorithm for this problem. We also present an O(n5/12) approximation algorithm for graphs with girth at least 5 and a constant approximation algorithm for trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.