Abstract

In recent years, data examples have been at the core of several different approaches to schema-mapping design. In particular, Gottlob and Senellart introduced a framework for schema-mapping discovery from a single data example, in which the derivation of a schema mapping is cast as an optimization problem. Our goal is to refine and study this framework in more depth. Among other results, we design a polynomial-time log( n )-approximation algorithm for computing optimal schema mappings from a given set of data examples (where n is the combined size of the given data examples) for a restricted class of schema mappings; moreover, we show that this approximation ratio cannot be improved. In addition to the complexity-theoretic results, we implemented the aforementioned log( n )-approximation algorithm and carried out an experimental evaluation in a real-world mapping scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.