Abstract
In this paper, we consider the restless bandit problem, which is one of the most well-studied generalizations of the celebrated stochastic multi-armed bandit problem in decision theory. In its ultimate generality, the restless bandit problem is known to be PSPACE-Hard to approximate to any non-trivial factor, and little progress has been made on this problem despite its significance in modeling activity allocation under uncertainty. We make progress on this problem by showing that for an interesting and general subclass that we term Monotone bandits, a surprisingly simple and intuitive greedy policy yields a factor 2 approximation. Such greedy policies are termed index policies, and are popular due to their simplicity and their optimality for the stochastic multi-armed bandit problem. The Monotone bandit problem strictly generalizes the stochastic multi-armed bandit problem, and naturally models multi-project scheduling where the state of a project becomes increasingly uncertain when the project is not scheduled. We develop several novel techniques in the design and analysis of the index policy. Our algorithm proceeds by introducing a novel balance constraint to the dual of a well-known LP relaxation to the restless bandit problem. This is followed by a structural characterization of the optimal solution by using both the exact primal as well as dual complementary slackness conditions. This yields an interpretation of the dual variables as potential functions from which we derive the index policy and the associated analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.