Abstract

Approximation algorithms for classical constraint satisfaction problems are one of the main research areas in theoretical computer science. Here we define a natural approximation version of the QMA-complete local Hamiltonian problem and initiate its study. We present two main results. The first shows that a non-trivial approximation ratio can be obtained in the class NP using product states. The second result (which builds on the first one), gives a polynomial time (classical) algorithm providing a similar approximation ratio for dense instances of the problem. The latter result is based on an adaptation of the "exhaustive sampling method" by Arora et al. [J. Comp. Sys. Sci. 58, p.193 (1999)] to the quantum setting, and might be of independent interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.