Abstract

Complex polynomial optimization has recently gained more attention in both theory and practice. In this paper, we study optimization of a real-valued general conjugate complex form over various popular constraint sets including the m-th roots of complex unity, the complex unit circle, and the complex unit sphere. A real-valued general conjugate complex form is a homogenous polynomial function of complex variables as well as their conjugates, and always takes real values. General conjugate form optimization is a wide class of complex polynomial optimization models, which include many homogenous polynomial optimization in the real domain with either discrete or continuous variables, and Hermitian quadratic form optimization as well as its higher degree extensions. All the problems under consideration are NP-hard in general and we focus on polynomial-time approximation algorithms with worst-case performance ratios. These approximation ratios improve previous results when restricting our problems to some special classes of complex polynomial optimization, and improve or equate previous results when restricting our problems to some special classes of polynomial optimization in the real domain. The algorithms are based on tensor relaxation and random sampling. Our novel technical contributions are to establish the first set of probability lower bounds for random sampling over the m-th root of unity, the complex unit circle, and the complex unit sphere, and to propose the first polarization formula linking general conjugate forms and complex multilinear forms. Some preliminary numerical experiments are conducted to show good performance of the proposed algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.