Abstract

A k-path vertex cover (VCPk) is a vertex set C of graph G such that every path of G on k vertices has at least one vertex in C. Because of its background in keeping data integrality of a network, minimum VCPk problem (MinVCPk) has attracted a lot of researches in recent years. This paper studies the minimum weight connected VCPk problem (MinWCVCPk), in which every vertex has a weight and the VCPk found by the algorithm induces a connected subgraph and has the minimum weight. It is known that MinWCVCPk is set-cover-hard. We present two polynomial-time approximation algorithms for MinWCVCP3. The first one is a greedy algorithm achieving approximation ratio 3ln n. The difficulty lies in its analysis dealing with a non-submodular potential function. The second algorithm is a 2-stage one, finding a VCP3 in the first stage and then adding more vertices for connection. We show that its approximation ratio is at most lnδmax+4+ln2, where δmax is the maximum degree of the graph. Considering the inapproximability of this problem, this ratio is asymptotically tight.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.