Abstract

A k-path vertex cover (VCPk) is a vertex set C of graph G such that every path of G on k vertices has at least one vertex in C. Because of its background in keeping data integrality of a network, minimum VCPk problem (MinVCPk) has attracted a lot of researches in recent years. This paper studies the minimum weight connected VCPk problem (MinWCVCPk), in which every vertex has a weight and the VCPk found by the algorithm induces a connected subgraph and has the minimum weight. It is known that MinWCVCPk is set-cover-hard. We present two polynomial-time approximation algorithms for MinWCVCP3. The first one is a greedy algorithm achieving approximation ratio 3ln n. The difficulty lies in its analysis dealing with a non-submodular potential function. The second algorithm is a 2-stage one, finding a VCP3 in the first stage and then adding more vertices for connection. We show that its approximation ratio is at most lnδmax+4+ln2, where δmax is the maximum degree of the graph. Considering the inapproximability of this problem, this ratio is asymptotically tight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.