Abstract
For a given convex polyhedron P of n vertices inside a sphere Q, we study the problem of cutting P out of Q by a sequence of plane cuts. The cost of a plane cut is the area of the intersection of the plane with Q, and the objective is to find a cutting sequence that minimizes the total cost. We present three approximation solutions to this problem: an O(nlogn) time O(log2n)-factor approximation, an O(n1.5logn) time O(logn)-factor approximation, and an O(1)-factor approximation with exponential running time. Our results significantly improve upon the previous O(n3) time O(log2n)-factor approximation solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.