Abstract

The exposure of a path p in a sensor field is a measure of the likelihood that an object traveling along p is detected by at least one sensor from a network of sensors, and is formally defined as an integral over all points x of p of the sensibility (the strength of the signal coming from x ) times the element of path length. The minimum exposure path (MEP) problem is, given a pair of points x and y inside a sensor field, to find a path between x and y of minimum exposure. In this article we introduce the first rigorous treatment of the problem, designing an approximation algorithm for the MEP problem with guaranteed performance characteristics. Given a convex polygon P of size n with O(n) sensors inside it and any real number ϵ>0, our algorithm finds a path in P whose exposure is within an 1+ϵ factor of the exposure of the MEP, in time O ( n /ϵ 2 ψlog n ), where ψ is a geometric characteristic of the field. We also describe a framework for a faster implementation of our algorithm, which reduces the time by a factor of approximately θ(1/ϵ), while keeping the same approximation ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.