Abstract

We develop the first algorithmic approach to compute provably good ordering policies for a multiperiod, capacitated, stochastic inventory system facing stochastic nonstationary and correlated demands that evolve over time. Our approach is computationally efficient and guaranteed to produce a policy with total expected cost no more than twice that of an optimal policy. As part of our computational approach, we propose a novel scheme to account for backlogging costs in a capacitated, multiperiod environment. Our cost-accounting scheme, called the forced marginal backlogging cost-accounting scheme, is significantly different from the period-by-period accounting approach to backlogging costs used in dynamic programming; it captures the long-term impact of a decision on system performance in the presence of capacity constraints. In the likely event that the per-unit order costs are large compared to the holding and backlogging costs, a transformation of cost parameters yields a significantly improved guarantee. We also introduce new semimyopic policies based on our new cost-accounting scheme to derive bounds on the optimal base-stock levels. We show that these bounds can be used to effectively improve any policy. Finally, empirical evidence is presented that indicates that the typical performance of this approach is significantly stronger than these worst-case guarantees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.