Abstract

A special case of the bottleneck Steiner tree problem in the Euclidean plane was considered in this paper. The problem has applications in the design of wireless communication networks, multifacility location, VLSI routing and network routing. For the special case which requires that there should be no edge connecting any two Steiner points in the optimal solution, a 3-restricted Steiner tree can be found indicating the existence of the performance ratio √2. In this paper, the special case of the problem is proved to be NP-hard and cannot be approximated within ratio √2. First a simple polynomial time approximation algorithm with performance ratio √3 is presented. Then based on this algorithm and the existence of the 3-restricted Steiner tree, a polynomial time approximation algorithm with performance ratio--√2 + e is proposed, for any e > 0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.