Abstract
In this paper a boundary layer method is combined with an asymptotic expansion method to approximate the traveling wave solution of a nonlocal delayed reaction-diffusion model. In particular, assuming that the diffusion coefficients of the mature and immature populations are small, the wave solution is approximated in three steps. First, the model is reduced by considering the Dirac delta function as the kernel function of the integral term. Second, a boundary layer method is employed to approximate the wave solution of the reduced model. Third, using this result and the generalized Watson’s lemma, the wave solution of the general model is approximated. By considering various birth functions, the approximate wave solutions are numerically compared with the exact wave solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.