Abstract
We study the marginal-MAP problem on graphical models, and present a novel approximation method based on direct approximation of the sum operation. A primary difficulty of marginal-MAP problems lies in the non-commutativity of the sum and max operations, so that even in highly structured models, marginalization may produce a densely connected graph over the variables to be maximized, resulting in an intractable potential function with exponential size. We propose a chain decomposition approach for summing over the marginalized variables, in which we produce a structured approximation to the MAP component of the problem consisting of only pairwise potentials. We show that this approach is equivalent to the maximization of a specific variational free energy, and it provides an upper bound of the optimal probability. Finally, experimental results demonstrate that our method performs favorably compared to previous methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.