Abstract

A bi-objective competitive facility location and design problem is considered. The problem of obtaining a complete representation of the efficient set and its corresponding Pareto-front has been previously tackled through exact general methods, but they require high computational effort. In this work, we propose a new evolutionary multi-objective optimization algorithm, named FEMOEA, which deals with the problem at hand in a fast and efficient way. It combines ideas from different multi-objective and single-objective optimization evolutionary algorithms, although it also incorporates new devices which help to reduce the computational requirements, and also to improve the quality of the provided solutions. The performance of the algorithm is analyzed by comparing it to other (meta)heuristics previously proposed in the literature. In particular, the reference algorithms MOEA/D, SPEA2 and NSGA-II have been considered. A comprehensive computational study shows that the new heuristic method outperforms, on average, the three heuristic algorithms. Additionally, it reduces, on average, the computing time of the exact methods by approximately 99%, and this offering high-quality discrete approximations of the true Pareto-front.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.