Abstract
We present a pseudo-polynomial time (1 + epsilon)-approximation algorithm for computing the integral and average Frechet distance between two given polygonal curves T_1 and T_2. The running time is in O(zeta^{4}n^4/epsilon^2) where n is the complexity of T_1 and T_2 and zeta is the maximal ratio of the lengths of any pair of segments from T_1 and T_2. Furthermore, we give relations between weighted shortest paths inside a single parameter cell C and the monotone free space axis of C. As a result we present a simple construction of weighted shortest paths inside a parameter cell. Additionally, such a shortest path provides an optimal solution for the partial Frechet similarity of segments for all leash lengths. These two aspects are related to each other and are of independent interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.