Abstract

The Euler--Maclaurin (EM) summation formula is used in many theoretical studies and numerical calculations. It approximates the sum $\sum_{k=0}^{n-1} f(k)$ of values of a function $f$ by a linear combination of a corresponding integral of $f$ and values of its higher-order derivatives $f^{(j)}$. An alternative (Alt) summation formula was presented by the author, which approximates the sum by a linear combination of integrals only, without using derivatives of $f$. It was shown that the Alt formula will in most cases outperform the EM formula. In the present paper, a multiple-sum/multi-index-sum extension of the Alt formula is given, with applications to summing possibly divergent multi-index series and to sums over the integral points of integral lattice polytopes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.