Abstract

A mesh-free numerical method for solving linear elliptic PDE's using the local kernel theory that was developed for manifold learning is proposed. In particular, this novel approach exploits the local kernel theory which allows one to approximate the Kolmogorov operator associated with Itô diffusion processes on compact Riemannian manifolds without boundary or with Neumann boundary conditions using an integral operator. Theoretical justification for the convergence of this numerical technique is provided under the standard conditions for the existence of the weak solutions of the PDEs. Numerical results on various instructive examples, ranging from PDE's defined on flat and non-flat manifolds with known and unknown embedding functions show accurate approximation with error on the order of the kernel bandwidth parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.