Abstract

Constructing neural networks for function approximation is a classical and longstanding topic in approximation theory. In this paper, we aim at constructing deep neural networks with three hidden layers using a sigmoidal activation function to approximate smooth and sparse functions. Specifically, we prove that the constructed deep nets with controllable magnitude of free parameters can reach the optimal approximation rate in approximating both smooth and sparse functions. In particular, we prove that neural networks with three hidden layers can avoid the phenomenon of saturation, i.e., the phenomenon that for some neural network architectures, the approximation rate stops improving for functions of very high smoothness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call