Abstract
Constructing neural networks for function approximation is a classical and longstanding topic in approximation theory. In this paper, we aim at constructing deep neural networks with three hidden layers using a sigmoidal activation function to approximate smooth and sparse functions. Specifically, we prove that the constructed deep nets with controllable magnitude of free parameters can reach the optimal approximation rate in approximating both smooth and sparse functions. In particular, we prove that neural networks with three hidden layers can avoid the phenomenon of saturation, i.e., the phenomenon that for some neural network architectures, the approximation rate stops improving for functions of very high smoothness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.