Abstract
The Directed Steiner Tree (DST) problem is a cornerstone problem in network design. We focus on the generalization of the problem with higher connectivity requirements. The problem with one root and two sinks is APX-hard. The problem with one root and many sinks is as hard to approximate as the directed Steiner forest problem, and the latter is well known to be as hard to approximate as the label cover problem. Utilizing previous techniques (due to others), we strengthen these results and extend them to undirected graphs. Specifically, we give an Ω(k∊) hardness bound for the rooted k-connectivity problem in undirected graphs; this addresses a recent open question of Khanna. As a consequence, we also obtain the Ω(k∊) hardness of the undirected subset k-connectivity problem. Additionally, we give a result on the integrality ratio of the natural linear programming relaxation of the directed rooted k-connectivity problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.