Abstract

This note conducts a comparative study of some approximating properties of the metric projection, generalized projection, and generalized metric projection in uniformly convex and uniformly smooth Banach spaces. We prove that the inverse images of the metric projections are closed and convex cones, but they are not necessarily convex. In contrast, inverse images of the generalized projection are closed and convex cones. Furthermore, the inverse images of the generalized metric projection are neither a convex set nor a cone. We also prove that the distance from a point to its projection on a convex set is a weakly lower semicontinuous function for all three notions of projections. We provide illustrating examples to highlight the different behavior of the three projections in Banach spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.