Abstract

The \v{C}ech complex is one of the most widely used tools in applied algebraic topology. Unfortunately, due to the inclusive nature of the \v{C}ech filtration, the number of simplices grows exponentially in the number of input points. A practical consequence is that computations may have to terminate at smaller scales than what the application calls for. In this paper we propose two methods to approximate the \v{C}ech persistence module. Both are constructed on the level of spaces, i.e. as sequences of simplicial complexes induced by nerves. We also show how the bottleneck distance between such persistence modules can be understood by how tightly they are sandwiched on the level of spaces. In turn, this implies the correctness of our approximation methods. Finally, we implement our methods and apply them to some example point clouds in Euclidean space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call