Abstract

Difficult Pareto set topology refers to multi-objective problems with geometries of the Pareto set such that neighboring optimal solutions in objective space differ in several or all variables in decision space. These problems can present a tough challenge for evolutionary multi-objective algorithms to find a good approximation of the optimal Pareto set well-distributed in decision and objective space. One important challenge optimizing these problems is to keep or restore diversity in decision space. In this work, we propose a method that learns a model of the topology of the solutions in the population by performing parametric spline interpolations for all variables in decision space. We use Catmull-Rom parametric curves as they allow us to deal with any dimension in decision space. The proposed method is appropriated for bi-objective problems since their optimal set is a one-dimensional curve according to the Karush-Kuhn-Tucker condition. Here, the proposed method is used to promote restarts from solutions generated by the model. We study the effectiveness of the proposed method coupled to NSGA-II and two variations of MOEA/D on problems with difficult Pareto set topology. These algorithms approach very differently the Pareto set. We argue and discuss their behavior and its implications for model building.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.