Abstract

The paper addresses the problem of time offset synchronization in the presence of temperature variations, which lead to a non-Gaussian environment. In this context, regular Kalman filtering reveals to be suboptimal. A functional optimization approach is developed in order to approximate optimal estimation of the clock offset between master and slave. A numerical approximation is provided to this aim, based on regular neural network training. Other heuristics are provided as well, based on spline regression. An extensive performance evaluation highlights the benefits of the proposed techniques, which can be easily generalized to several clock synchronization protocols and operating environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call