Abstract

The min-sum k-clustering problem in a metric space is to find a partition of the space into k clusters as to minimize the total sum of distances between pairs of points assigned to the same cluster. We give the first polynomial time non-trivial approximation algorithm for this problem. The algorithm provides an $\ratio$ approximation to the min-sum k-clustering problem in general metric spaces, with running time $\runtime$. The result is based on embedding of metric spaces into hierarchically separated trees. We also provide a bicriteria approximation result that provides a constant approximation factor solution with only a constant factor increase in the number of clusters. This result is obtained by modifying and drawing ideas from recently developed primal dual approximation algorithms for facility location.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.