Abstract
Tensor network states are for good reasons believed to capture ground states of gapped local Hamiltonians arising in the condensed matter context, states which are in turn expected to satisfy an entanglement area law. However, the computational hardness of contracting projected entangled pair states in two and higher dimensional systems is often seen as a significant obstacle when devising higher-dimensional variants of the density-matrix renormalisation group method. In this work, we show that for those projected entangled pair states that are expected to provide good approximations of such ground states of local Hamiltonians, one can compute local expectation values in quasi-polynomial time. We therefore provide a complexity-theoretic justification of why state-of-the-art numerical tools work so well in practice. We comment on how the transfer operators of such projected entangled pair states have a gap and discuss notions of local topological quantum order. We finally turn to the computation of local expectation values on quantum computers, providing a meaningful application for a small-scale quantum computer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.