Abstract

Motivated by conforming finite element methods for elliptic problems of second order, we analyze the approximation of the gradient of a target function by continuous piecewise polynomial functions over a simplicial mesh. The main result is that the global best approximation error is equivalent to an appropriate sum in terms of the local best approximations errors on elements. Thus, requiring continuity does not downgrade local approximability and discontinuous piecewise polynomials essentially do not offer additional approximation power, even for a fixed mesh. This result implies error bounds in terms of piecewise regularity over the whole admissible smoothness range. Moreover, it allows for simple local error functionals in adaptive tree approximation of gradients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.