Abstract
<abstract><p>In this article, we introduce the fundamentals of the theory of demicontractive mappings in metric spaces and expose the key concepts and tools for building a constructive approach to approximating the fixed points of demicontractive mappings in this setting. By using an appropriate geodesic averaged perturbation technique, we obtained strong convergence and $ \Delta $-convergence theorems for a Krasnoselskij-Mann type iterative algorithm to approximate the fixed points of quasi-nonexpansive mappings within the framework of CAT(0) spaces. The main results obtained in this nonlinear setting are natural extensions of the classical results from linear settings (Hilbert and Banach spaces) for both quasi-nonexpansive mappings and demicontractive mappings. We applied our results to solving an equilibrium problem in CAT(0) spaces and showed how we can approximate the equilibrium points by using our fixed point results. In this context we also provided a numerical example in the case of a demicontractive mapping that is not a quasi-nonexpansive mapping and highlighted the convergence pattern of the algorithm in <xref ref-type="table" rid="Table1">Table 1</xref>. It is important to note that the numerical example is set in non-Hilbert CAT(0) spaces.</p> </abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.