Abstract

The existence of the maximum likelihood estimate in a hierarchical log-linear model is crucial to the reliability of inference for this model. Determining whether the estimate exists is equivalent to finding whether the sufficient statistics vector $t$ belongs to the boundary of the marginal polytope of the model. The dimension of the smallest face $\mathbf{F}_{t}$ containing $t$ determines the dimension of the reduced model which should be considered for correct inference. For higher-dimensional problems, it is not possible to compute $\mathbf{F}_{t}$ exactly. Massam and Wang (2015) found an outer approximation to $\mathbf{F}_{t}$ using a collection of submodels of the original model. This paper refines the methodology to find an outer approximation and devises a new methodology to find an inner approximation. The inner approximation is given not in terms of a face of the marginal polytope, but in terms of a subset of the vertices of $\mathbf{F}_{t}$. Knowing $\mathbf{F}_{t}$ exactly indicates which cell probabilities have maximum likelihood estimates equal to $0$. When $\mathbf{F}_{t}$ cannot be obtained exactly, we can use, first, the outer approximation $\mathbf{F}_{2}$ to reduce the dimension of the problem and then the inner approximation $\mathbf{F}_{1}$ to obtain correct estimates of cell probabilities corresponding to elements of $\mathbf{F}_{1}$ and improve the estimates of the remaining probabilities corresponding to elements in $\mathbf{F}_{2}\setminus\mathbf{F}_{1}$. Using both real-world and simulated data, we illustrate our results, and show that our methodology scales to high dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.