Abstract

A procedure for determining a few of the largest singular values and corresponding singular vectors of large sparse matrices is presented. Equivalent eigensystems are solved using a technique originally proposed by Golub and Kent based on the computation of modified moments. The asynchronicity in the computations of moments and eigenvalues makes this method attractive for parallel implementations on a network of workstations. Although no obvious relationship between modified moments and the corresponding eigenvectors is known to exist, a scheme to approximate both eigenvalues and eigenvectors (and subsequently singular values and singular vectors) has been produced. This scheme exploits both modified moments in conjunction with the Chebyshev semi-iterative method and deflation techniques to produce approximate eigenpairs of the equivalent sparse eigensystems. The performance of an ANSI-C implementation of this scheme on a network of UNIX workstations and a 256-processor Cray T3D is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.