Abstract

ABSTRACTIn this study, we investigate the accuracy of approximating constant‐Q wave propagation by series of Zener or standard linear solid (SLS) mechanisms. Modelling in viscoacoustic and viscoelastic media is implemented in the time domain using the finite‐difference (FD) method. The accuracy of numerical solutions is evaluated by comparison with the analytical solution in homogeneous media. We found that the FD solutions using three SLS relaxation mechanisms as well as a single SLS mechanism, with properly chosen relaxation times, are quite accurate for both weak and strong attenuation. Although the RMS errors of FD simulations using a single relaxation mechanism increase with increasing offset, especially for strong attenuation (Q = 20), the results are still acceptable for practical applications. The synthetic data of the Marmousi‐II model further illustrate that the single SLS mechanism, to model constant Q, is efficient and sufficiently accurate. Moreover, it benefits from less computational costs in computer time and memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.