Abstract
The key nodes in a complex transportation network have a significant influence on the safety of traffic operations, connectivity reliability, and the performance of the entire network. However, the identification of key nodes in existing urban transportation networks has mainly focused on nonweighted networks and the network information of the nodes themselves, which do not accurately reflect their global status. Thus, the present study proposes a key node identification algorithm that combines traffic flow features and is based on weighted betweenness centrality. This study also uses weighted roads to construct an L-space weighted transportation network and an approximate algorithm for betweenness centrality in order to reduce the complexity of the calculations. The results of the simulation indicate that the proposed algorithm is not only capable of identifying the key nodes in a relatively short amount of time, but it does so with high accuracy. The findings of this study can be used to provide decision-making support for road network management, planning, and urban traffic construction optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.