Abstract
Y. Bartal (1996, 1998) gave a randomized polynomial time algorithm that given any n point metric G, constructs a tree T such that the expected stretch (distortion) of any edge is at most O (log n log log n). His result has found several applications and in particular has resulted in approximation algorithms for many graph optimization problems. However approximation algorithms based on his result are inherently randomized. In this paper we derandomize the use of Bartal's algorithm in the design of approximation algorithms. We give an efficient polynomial time algorithm that given a finite n point metric G, constructs O(n log n) trees and a probability distribution /spl mu/ on them such that the expected stretch of any edge of G in a tree chosen according to /spl mu/ is at most O(log n log log n). Our result establishes that finite metrics can be probabilistically approximated by a small number of tree metrics. We obtain the first deterministic approximation algorithms for buy-at-bulk network design and vehicle routing; in addition we subsume results from our earlier work on derandomization. Our main result is obtained by a novel view of probabilistic approximation of metric spaces as a deterministic optimization problem via linear programming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.