Abstract

This paper deals with some reachability issues for piecewise linear switched systems with time-dependent coefficients and multiplicative noise. Namely, it aims at characterizing data that are almost reachable at some fixed time T > 0 (belong to the closure of the reachable set in a suitable L 2-sense). From a mathematical point of view, this provides the missing link between approximate controllability towards 0 and approximate controllability towards given targets. The methods rely on linear-quadratic control and Riccati equations. The main novelty is that we consider an LQ problem with controlled backward stochastic dynamics and, since the coefficients are not deterministic (unlike some of the cited references), neither is the backward stochastic Riccati equation. Existence and uniqueness of the solution of such equations rely on structure arguments (inspired by [7]). Besides solvability, Riccati representation of the resulting control problem is provided as is the synthesis of optimal (non-Markovian) control. Several examples are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.