Abstract

Efficient separation of solutes by nanofiltration membranes (NMs) is the key to the utilization of wastewater and sustainable economic development. However, the establishment of dense and narrow-dispersed artificial tunnels in NMs remains a challenge, leading to impractical water permeability and solutes selectivity for real-world applications. In this work, we construct approximately 1 nm-sized artificial tunnels within the GO-based membranes (GOMs) to balance the water permeation and nanofiltration performances, by intercalating the three-dimensional wrinkled graphene (WG) sheets with surface functional groups manipulated. Such peculiar nanotunneled structure in the WG/GO composite membrane, at the optimized WG/GO ratio of 1:2, is revealed by the selective filtration of large-sized PEG gel particles over sub-nm-sized counterparts, leading to a selective rejection of >1 nm-sized molecules (e.g. CV, CR, and TB) over sub-nm-sized impurities (e.g. NR, MB, NaCl, and Na2SO4) with excellent mechanical stability and anti-fouling property. More importantly, the dense nanotunneled structure enables the composite membrane with an increased water flux of 65.68 L m-2h−1 bar−1, which is ∼48 times enhanced compared to that of pure GOM. Our strategy enables the precise engineering of artificial nanotunnels within compact GOM for high-performance dye/dye separation and dye desalination applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.