Abstract
We propose a new Monte Carlo method, based on dynamic importance sampling, to estimate the probability that a given set of nodes is connected in a graph (or network) where each link is failed with a given probability. The method generates the link states one by one, using a sampling strategy that approximates an ideal zero-variance importance sampling scheme. The approximation is based on minimal cuts in subgraphs. In an asymptotic rare-event regime where failure probability becomes very small, we prove that the relative error of our estimator remains bounded, and even converges to 0 under additional conditions, when the unreliability of individual links converges to 0. The empirical performance of the new sampling scheme is illustrated by examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.