Abstract

One of the most common operations in signal processing is matrix multiplication. However, it presents a major computational bottleneck when the matrix dimension is high, as can occur for large data size or feature dimension. Two different approaches to overcoming this bottleneck are: 1) low rank approximation of the matrix product; and 2) distributed computation. We propose a scheme that combines these two approaches. To enable distributed low rank approximation, we generalize the approximate matrix CR-multiplication to accommodate weighted block sampling, and we introduce a weighted coded matrix multiplication method. This results in novel approximate weighted CR coded matrix multiplication schemes, which achieve improved performance for distributed matrix multiplication and are robust to stragglers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.