Abstract
In this article, we investigate an algorithm for the fast O(N) and approximate simulation of long memory (LM) processes of length N using the discrete wavelet transform. The algorithm generates stationary processes and is based on the notion that we can improve standard wavelet-based simulation schemes by noting that the decorrelation property of wavelet transforms is not perfect for certain LM process. The method involves the simulation of circular autoregressive process of order one. We demonstrate some of the statistical properties of the processes generated, with some focus on four commonly used LM processes. We compare this simulation method with the white noise wavelet simulation scheme of Percival and Walden [Percival, D. and Walden, A., 2000, Wavelet Methods for Time Series Analysis (Cambridge: Cambridge University Press).].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.