Abstract

The inspirals of compact objects into massive black holes are some of the most exciting of the potential sources of gravitational waves for the planned Laser Interferometer Space Antenna (LISA). Observations of such extreme mass ratio inspirals (EMRIs) will not only reveal to us the properties of black holes in the Universe, but will allow us to verify that the space-time structure around massive compact objects agrees with the predictions of relativity. Detection of EMRI signals via matched filtering and interpretation of the observations will require models of the gravitational waveforms. The extreme mass ratio allows accurate waveforms to be computed from black hole perturbation theory, but this is computationally expensive and has not yet been fully developed. Ongoing research to scope out LISA data analysis algorithms requires waveforms that can be generated quickly in large numbers. To fulfil this purpose, families of approximate, "kludge", EMRI waveforms have been developed that capture the main features of true EMRI waveforms, but that can also be generated for a comparatively small computational cost. In this proceedings article, we briefly outline one such waveform family (the "numerical kludge"), its accuracy and some possible ways in which it might be improved in the future. Although accurate parameter extraction will require use of perturbative waveforms, these approximate waveforms are sufficiently faithful to the true waveforms that they may be able to play a role in detection of EMRIs in the LISA data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call