Abstract

We develop approximate estimation methods for exponential random graph models (ERGMs), whose likelihood is proportional to an intractable normalizing constant. The usual approach approximates this constant with Monte Carlo simulations, however convergence may be exponentially slow. We propose a deterministic method, based on a variational mean-field approximation of the ERGM's normalizing constant. We compute lower and upper bounds for the approximation error for any network size, adapting nonlinear large deviations results. This translates into bounds on the distance between true likelihood and mean-field likelihood. Monte Carlo simulations suggest that in practice our deterministic method performs better than our conservative theoretical approximation bounds imply, for a large class of models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.