Abstract
We consider the problem of computing the Value Adjustment of European contingent claims when the possibility of default of either party is considered, possibly including also funding and collateralization requirements.As shown in Brigo et al. (Brigo, Liu, Pallavicini, and Sloth (2016b), Brigo, Francischello, and Pallavicini (2016a)), this leads to a more articulate variety of Value Adjustments (XVA) that introduce some nonlinear features. When exploiting a reduced-form approach for the default times, the adjusted price can be characterized as the solution to a possibly nonlinear Backward Stochastic Differential Equation (BSDE). The expectation representing the solution of the BSDE is usually quite hard to compute even in a Markovian setting, and one might resort either to the discretization of the Partial Differential Equation characterizing it or to Monte Carlo Simulations. Both choices are computationally quite expensive, In this paper, we suggest an alternative method based on an appropriate change of numéraire and a Taylor polynomial expansion when intensities are represented by affine processes correlated with the asset price. The numerical discussion at the end of this work shows that, at least in the case of the Cox-Ingersoll-Ross (CIR) intensity model, even the simple first-order approximation has a remarkable computational efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.