Abstract

We extend the notion of lossy kernelization, introduced by Lokshtanov et al. [STOC 2017], to approximate Turing kernelization. An α-approximate Turing kernel for a parameterized optimization problem is a polynomial-time algorithm that, when given access to an oracle that outputs c-approximate solutions in 𝒪(1) time, obtains an α ⋅ c-approximate solution to the considered problem, using calls to the oracle of size at most f(k) for some function f that only depends on the parameter. Using this definition, we show that Independent Set parameterized by treewidth 𝓁 has a (1+e)-approximate Turing kernel with 𝒪(𝓁²/e) vertices, answering an open question posed by Lokshtanov et al. [STOC 2017]. Furthermore, we give (1+e)-approximate Turing kernels for the following graph problems parameterized by treewidth: Vertex Cover, Edge Clique Cover, Edge-Disjoint Triangle Packing and Connected Vertex Cover. We generalize the result for Independent Set and Vertex Cover, by showing that all graph problems that we will call friendly admit (1+e)-approximate Turing kernels of polynomial size when parameterized by treewidth. We use this to obtain approximate Turing kernels for Vertex-Disjoint H-packing for connected graphs H, Clique Cover, Feedback Vertex Set and Edge Dominating Set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.