Abstract
The time independent Dirac equation is solved analytically for equal scalar and vector hyperbolic potential function in the presence of Greene and Aldrich approximation scheme. The bound state energy equation and spinor wave functions expressed by the hypergeometric function have been obtained in detail with asymptotic iteration approach. In order to indicate the accuracy of this different approach proposed to solve second order linear differential equations, we present that in the non-relativistic limit, analytical solutions of the Dirac equation converge to those of the Schrodinger one. We introduce numerical results of the theoretical analysis for hyperbolic potential function. Bound states corresponding to arbitrary values of n and l are reported for potential parameters covering a wide range of interaction. Also, we investigate relativistic vibrational energy spectra of alkali metal diatomic molecules in the different electronic states. It is observed that theoretical vibrational energy values are consistent with experimental Rydberg–Klein–Rees (RKR) results and vibrational energies of NaK, $$K_2$$ and KRb diatomic molecules interacting with hyperbolic potential smoothly converge to the experimental dissociation limit $$D_e=2508cm^{-1}$$ , $$254cm^{-1}$$ and $$4221cm^{-1}$$ , respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.