Abstract
The Poisson–Lindley distribution is a compound discrete distribution that can be used as an alternative to other discrete distributions, like the negative binomial. This paper develops approximate one-sided and equal-tailed two-sided tolerance intervals for the Poisson–Lindley distribution. Practical applications of the Poisson–Lindley distribution frequently involve large samples, thus we utilize large-sample Wald confidence intervals in the construction of our tolerance intervals. A coverage study is presented to demonstrate the efficacy of the proposed tolerance intervals. The tolerance intervals are also demonstrated using two real data sets. The R code developed for our discussion is briefly highlighted and included in the tolerance package.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.