Abstract

Random invariant manifolds and foliations play an important role in the study of the qualitative dynamical behaviors for nonlinear stochastic partial differential equations. In a general way, these random objects are difficult to be visualized geometrically or computed numerically. The current work provides a perturbation approach to approximate these random invariant manifolds and foliations. After briefly discussing the existence of random invariant manifolds and foliations for a class of stochastic systems driven by additive noises, the corresponding Wong–Zakai type of convergence result in path-wise sense is established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.