Abstract
Quantum error correction (QEC) is a key concept in quantum computation as well as many areas of physics. There are fundamental tensions between continuous symmetries and QEC. One vital situation is unfolded by the Eastin–Knill theorem, which forbids the existence of QEC codes that admit transversal continuous symmetry actions (transformations). Here, we systematically study the competition between continuous symmetries and QEC in a quantitative manner. We first define a series of meaningful measures of approximate symmetries motivated from different perspectives, and then establish a series of trade-off bounds between them and QEC accuracy utilizing multiple different methods. Remarkably, the results allow us to derive general quantitative limitations of transversally implementable logical gates, an important topic in fault-tolerant quantum computation. As concrete examples, we showcase two explicit types of quantum codes, obtained from quantum Reed–Muller codes and thermodynamic codes, respectively, that nearly saturate our bounds. Finally, we discuss several potential applications of our results in physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.