Abstract

We present approximate structure learning algorithms for Bayesian networks. We discuss the two main phases of the task: the preparation of the cache of the scores and structure optimization, both with bounded and unbounded treewidth. We improve on state-of-the-art methods that rely on an ordering-based search by sampling more effectively the space of the orders. This allows for a remarkable improvement in learning Bayesian networks from thousands of variables. We also present a thorough study of the accuracy and the running time of inference, comparing bounded-treewidth and unbounded-treewidth models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call