Abstract
We present a new method for carrying out state estimation in multi-agent settings that are characterized by continuous or large discrete state spaces. State estimation in multiagent settings involves updating an agent's belief over the physical states and the space of other agents' models. We factor out the models of the other agents and update the agent's belief over these models, as exactly as possible. Simultaneously, we sample particles from the distribution over the large physical state space and project the particles in time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.