Abstract
In this paper we shall consider self-adjoint singularly perturbed problem described by the ordinary differential equation of second order with small parameter multiplying the highest derivative and discontinuous source term, and the appropriate boundary conditions, which describes steady state of certain flow problems. The solution displays both boundary layers and an interior layer. The domain decomposition will be performed determining layer subintervals which are adapted to polynomial approximation. The division points for the interior layer are determined by the procedure similar to the one for boundary layers using appropriate resemblance function. The solution out of boundary layer is approximated by the solution of the reduced problem, and the layer solutions is approximated by truncated orthogonal series giving a smooth approximate solution upon the entire interval. The coefficients of the truncated series are evaluated using pseudospectral technique. The rate of convergence is examined and the order-of-magnitude of the error is given, using the principle of inverse monotonicity and the behavior of the pseudospectral approximations. Numerical example is included and it shows the high accuracy of the presented method. .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.