Abstract
In a previous paper a mathematical model was developed for the dynamics of activation and clonal expansion of T cells during the immune response to a single type of antigen challenge, constructed phenomenologically in the macroscopic framework of a thermodynamic theory of continuum mechanics for reacting and proliferating fluid mixtures. The present contribution deals with approximate smooth solutions, called asymptotic waves, of the system of PDEs describing the introduced model, obtained using a suitable perturbative method. In particular, in the one-dimensional case, after deriving the expression of the velocity along the characteristic rays and the equation of the wave front, the transport equation for the first perturbation term of the asymptotic solution is obtained. Finally, it is shown that this transport equation can be reduced to an equation similar to Burgers equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.